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Negative Controls
A Tool for Detecting Confounding and Bias in Observational Studies

Marc Lipsitch,a,b,c Eric Tchetgen Tchetgen,a,c,d and Ted Cohena,c,e

Abstract: Noncausal associations between exposures and outcomes
are a threat to validity of causal inference in observational studies.
Many techniques have been developed for study design and analysis
to identify and eliminate such errors. Such problems are not ex-
pected to compromise experimental studies, where careful standard-
ization of conditions (for laboratory work) and randomization (for
population studies) should, if applied properly, eliminate most such
noncausal associations. We argue, however, that a routine precau-
tion taken in the design of biologic laboratory experiments—the use
of “negative controls”—is designed to detect both suspected and
unsuspected sources of spurious causal inference. In epidemiology,
analogous negative controls help to identify and resolve confound-
ing as well as other sources of error, including recall bias or analytic
flaws. We distinguish 2 types of negative controls (exposure controls
and outcome controls), describe examples of each type from the
epidemiologic literature, and identify the conditions for the use of
such negative controls to detect confounding. We conclude that
negative controls should be more commonly employed in observa-
tional studies, and that additional work is needed to specify the
conditions under which negative controls will be sensitive detectors
of other sources of error in observational studies.

(Epidemiology 2010;21: 383–388)

Epidemiologists seek to distinguish the causal effect of
exposure A on outcome Y from associations due to other

mechanisms. Noncausal associations may be classified into 3
categories (in addition to chance)1: mismeasurement (eg,
recall bias), confounding, and biased selection of individuals
into the analysis.

In experimental biology, the manipulation of experi-
mental conditions prevents many of the noncausal associa-
tions that arise in observational studies. Nonetheless, exper-
imental biologists routinely question whether they have
correctly inferred causal relationships from the results of their
experiments. Biologists employ “negative controls” as a
means of ruling out possible noncausal interpretations of their
results. We describe the use of negative controls in experi-
ments, highlight some examples of their use in epidemiologic
studies, and define the conditions under which negative
controls can detect confounding in epidemiologic studies.
Although the particular threats to causal inference are differ-
ent in experimental and observational sciences, the use of
negative controls is a valuable means of identifying non-
causal associations and can complement other epidemiologic
methods for improving causal inference.

EXPERIMENTAL BIOLOGY: THREATS TO
CAUSAL INFERENCE AND THE USE OF

NEGATIVE CONTROLS
One might imagine that the experimental method would

circumvent most threats to the validity of causal inference
that occur in observational studies. For example, consider the
hypothesis that a particular cytokine—a chemical involved in
signaling in the immune system—enhances the killing of a
species of bacteria by neutrophils, a class of white blood
cells.2 An experiment is devised in which neutrophils, bac-
teria, and growth medium are mixed together. In condition 1,
the cytokine is added, and in condition 2, some inert sub-
stance such as saline solution is added. After incubation, the
bacteria are enumerated and the number of live bacteria
compared between conditions 1 and 2.

If the investigator finds fewer live bacteria in condition
1 than in condition 2, the finding is consistent with the
hypothesis that the cytokine enhanced neutrophil-mediated
killing. Nonetheless, concern remains that something other
than cytokine-aided, neutrophil-mediated killing may be re-
sponsible. For example, perhaps there is a contaminant in the
cytokine preparation that directly kills bacteria, or perhaps
the cytokine itself kills bacteria, or perhaps some other
unintended difference between the treated and untreated con-
ditions (eg, temperature or pH) caused the differential sur-
vival of the bacteria.
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Each of these unintended differences is broadly similar
to a confounder—a characteristic associated with the expo-
sure (presence or absence of the cytokine) and causes the
outcome (differences in bacterial counts), thereby causing a
spurious association between the presence of the cytokine and
differences in bacterial counts.

Experimental biologists address such concerns in 2
ways. The first is to attempt to eliminate unwanted differ-
ences between the compared groups (in the design) and to
measure and account for any unavoidable differences (in the
analysis). For example, a researcher would make all condi-
tions (dilution protocols, incubators, etc.) identical between
the 2 conditions except for the variable of interest (ie, the
presence/absence of the cytokine). Replication of the exper-
iment reduces the likelihood that some chance factor was
systematically different between the 2 experimental arms.
Sometimes, experimental variation nonetheless remains.
When experimental variation cannot be eliminated by these
approaches, experimentalists may control for this variation by
matching or statistical adjustment for the day on which an
assay was performed. In experimental studies of population
health outcomes (clinical trials), analogous precautions in-
clude randomization (to assure an expectation of baseline
exchangeability between groups),3 use of multiple individu-
als in each treatment group (replication), and analytic adjust-
ment for measured confounders.

The second general approach is to perform negative
controls: to repeat the experiment under conditions in which
it is expected to produce a null result and verify that it does
indeed produce a null result. Several strategies are employed
to design negative controls,2 such as:

• Leave out an essential ingredient. In the absence of neu-
trophils, there should be the same number of bacteria with
or without the cytokine; if a contaminant (or the cytokine
itself) is killing bacteria without involving neutrophils, this
negative control should produce fewer bacteria with the
cytokine than without.

• Inactivate the (hypothesized) active ingredient. Specific
antibodies that neutralize the cytokine (but would have no
effect on a contaminant) can be added to the preparation;
killing should not occur if the cytokine is responsible for
the effect.

• Check for an effect that would be impossible by the
hypothesized mechanism. Suppose there were a species of
bacteria that was completely impervious to the actions of
neutrophils. The experiment could be repeated with this
species, rather than the species of interest, to confirm there
is no difference between conditions 1 and 2. This would
help to rule out the possibility of some non-neutrophil-
mediated effect of the cytokine preparation on bacteria.

As with the list of noncausal explanations for an ex-
perimental result, the list of possible negative controls is

almost endless, and judgment is required to assess how many
such noncausal explanations are plausible and which negative
controls are of greatest value in ruling out key threats to valid
inference. Peer reviewers of biologic experiments usually re-
quire some negative controls to validate experimental results.

EXAMPLES OF THE USE OF NEGATIVE
CONTROLS IN EPIDEMIOLOGY

In an epidemiologic study to assess whether an associ-
ation between a risk factor A and an outcome Y is likely to be
causal, it is common to address the possibility of confounding
by measured variables L by adjusting for them, using such
techniques as restriction, stratification, multivariate model-
ing, matching, inverse-probability weighting, or g-estimation
(Fig. 1).4

Epidemiologists also sometimes use negative controls
to detect confounding and other sources of incorrect causal
inference. This approach has been elegantly applied to the
debate over the effects of vaccination of the elderly on
“pneumonia or influenza hospitalization and on all-cause
mortality. Observational studies in elderly persons have
shown that vaccination against influenza is associated with a
remarkably large reduction in one’s risk of pneumonia/influ-
enza hospitalization and also in one’s risk of all-cause mor-
tality in the following season, after adjustment for measured
covariates that indicate health status.5 However, older age is
associated with a less robust immune response to influenza
vaccination, and ecological data suggest that the benefits
measured in observational studies far exceed the correspond-
ing benefits expected at the population level when influenza
vaccination rates have increased among the elderly.6

Importantly, both outcomes are nonspecific, in the sense that
they have unknown and time-varying contributions from
influenza. This is obviously true for all-cause mortality, and
it is also true for pneumonia/influenza hospitalization, be-
cause the cause of respiratory infection is often not ascer-
tained, and many pneumonia cases are caused by agents other
than influenza. The large degree of protection against these
outcomes observed in individual level studies, combined with

FIGURE 1. Causal diagram for the effect of an exposure of
interest (A) on an outcome of interest (Y), with confounders L
(assumed measured) and U (assumed uncontrolled) that cause
both A and Y. The dashed line between L and U indicates that
either may cause the other, and they may share common
causes.
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the lack of measurable vaccine effect in ecological studies,
have led to a suspicion that uncontrolled confounding has
exaggerated the impact of influenza vaccination on mortality
and on pneumonia/influenza hospitalization in the elderly.6–8

To test this hypothesis, Jackson et al7 reproduced ear-
lier estimates of the protective effect of influenza vaccination,
but then repeated the analysis for 2 sets of negative control
outcomes, and showed that the protective effect was observed
even in circumstances where the vaccine could not have
caused the protection. For the first negative control outcome,
the authors7 used the fact that vaccination often begins in
autumn, while influenza transmission is often minimal until
winter. Thus, they could assess the risk of pneumonia/influ-
enza hospitalization and all-cause mortality among vacci-
nated versus unvaccinated persons before, during, and after
influenza season. The only biologically plausible mechanism
by which influenza vaccine could protect against mortality or
pneumonia/influenza hospitalization is by preventing influ-
enza or its consequences; therefore, Jackson et al7 reasoned
that if the effect measured in previous studies were causal, it
should be most prominent during influenza season. If instead
it were due to confounding, then the protective effect should
be observable immediately after vaccination but before influ-
enza season. In a cohort study analyzed with a Cox propor-
tional hazards model, despite efforts to control for confound-
ing, they observed that the protective effect was actually
greatest before, intermediate during, and least after influenza
season. They concluded that this is evidence that confound-
ing, rather than protection against influenza, accounts for a
substantial part of the observed “protection.” The use of this
negative-control outcome approach is formally similar to the
“leave-out-an-essential-ingredient” control described above,
as influenza is essential in the proposed causal pathway.

Second, Jackson et al7 postulated that the protective
effects of influenza vaccination, if real, should be limited to
outcomes plausibly linked to influenza. In contrast, if the
relationship were due to an uncontrolled confounder, then the
same “protection” might be observed for irrelevant outcomes.
They repeated their analysis, but substituted hospitalization
for injury or trauma as the end point. They found that
influenza vaccination was also “protective” against injury or
trauma hospitalization. This, too, was interpreted as evidence
that some of the protection observed for pneumonia/influenza
hospitalization or mortality was due to inadequately con-
trolled confounding. This second negative control outcome is
formally similar to the “check-for-an-effect-impossible-by-
the-hypothesized-mechanism” approach described above.

Epidemiologists also sometimes use negative control ex-
posures to examine whether observed associations are causal.
An example is the inclusion in questionnaires of irrelevant
variables, sometimes called “probe variables,” to assess if recall
bias may be responsible for an observed association between a
self-reported exposure and an outcome. A recent study9 tested

the association between multiple sclerosis (MS) and a variety of
common childhood infections assessed by self-report. The in-
vestigators found statistically significant positive associations of
MS with a recalled history of 5 different viral infections. Sus-
pecting that cases may recall prior medical events more often or
with more certainty than controls, the investigators’ question-
naire also included several childhood medical events not plau-
sibly associated with MS, such as broken limbs, tonsillectomy,
and concussions. In the absence of a causal association, any
measured association with these probe variables would suggest
recall bias for the variables of interest. The authors found that the
magnitude of association with these irrelevant exposures was
comparable with the magnitude observed for each of the self-
reported infections except one (infectious mononucleosis) that
had a much stronger association. They concluded that, after
accounting for recall bias, only infectious mononucleosis
showed a specific association with MS.

Another application of negative controls has been to
expose “immortal time bias,” a form of selection bias that
produces spurious associations between observed variables.
Suissa and Ernst10 suspected that the reported benefits of
nasal corticosteroids in preventing asthma resulted from this
form of bias, in which exposed persons are credited with time
at risk during which the event cannot occur, and thus exposed
persons have an artificially low event rate. Inclusion of the
“immortal” time is dependent on both being exposed during
that time and on not having the outcome during that time10;
hence, a (negative) association is induced between exposure
and outcome. To demonstrate such bias, the authors repeated
prior analyses but restricted the exposed class to persons with
a single annual dose of corticosteroids—a dose far too low to
have plausible biologic effect (ie, a negative control expo-
sure). They found that even this very modest exposure was
associated with substantial protection against asthma, sug-
gesting that the previous analytic approach was inappropriate.
In this case, the investigators already suspected what form of
bias was operating and used the analysis to prove their point.
In principle, the original investigators could have done such
an analysis to test for bias.

CHOICE OF NEGATIVE CONTROLS TO DETECT
CONFOUNDING IN EPIDEMIOLOGY

Negative controls have been used to detect confounding
(the influenza vaccine example7), recall bias, (the MS exam-
ple9), and selection bias (the nasal corticosteroid example10).
Furthermore, it may be possible to specify how negative
controls should be designed to aid in detecting biased causal
inferences resulting from each of these mechanisms, and also
perhaps to detect other forms of analytical errors. In this
section, we focus on the conditions under which negative
controls in epidemiology can detect confounding.1

The essential purpose of a negative control is to repro-
duce a condition that cannot involve the hypothesized causal
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mechanism but is very likely to involve the same sources of
bias that may have been present in the original association. If
a contaminant (source of bias) was responsible for the effect
of the cytokine on bacteria, it should have its effect even
when the hypothesized mechanism of the effect (through
neutrophils) is prevented through neutralization of the cyto-
kine or through omission of neutrophils from the experiment.
If an uncontrolled confounder (general good health or health-
ful practices) is responsible for the protection observed from
influenza vaccine against mortality or pneumonia/influenza
hospitalization, the same confounder might be associated
with other outcomes that are not plausibly prevented by
influenza vaccination.

This description suggests a general principle for the
selection of negative controls to detect residual confounding.
Ideally, a negative control outcome (N) should be an outcome
such that the set of common causes of exposure A and
outcome Y should be as identical as possible to the set of
common causes of A and N (Fig. 2). To the extent that the set
of unobserved common causes of A and Y overlaps with the
set of unobserved common causes (U) of A and N, we call the
negative control outcome N “U-comparable” to Y. If N and Y
are U-comparable outcomes (ie, with an identical set of
common causes that are associated with A), and assuming
that N is not caused by A, an association A-N when analyzed
according to the same procedure used to analyze A-Y would
indicate bias in the association A-Y. If N and Y are perfectly
U-comparable and N is not caused by A, then a null finding
of A-N implies that the A-Y association is not likely biased
by the pathways examined through this negative control.

Negative control outcomes in practice will be only
approximately U-comparable, at best. Thus, it is possible that
the observed association between A and N is caused by some
uncontrolled confounder U2, which is not a confounder of the
A-Y association; hence, finding an unexpected association

between A and N does not prove unequivocally that the A-Y
association is biased. In the example of using death or
hospitalization from injury as a negative control outcome for
death or pneumonia/influenza hospitalization, one could ar-
gue that there may be some common causes of vaccination
and injury that are not causes of all-cause death or pneumo-
nia/influenza hospitalization. Such common causes (we can-
not think of a plausible one) would create an association in
the negative control analysis of vaccination and injury, even
if the primary analyses of vaccination and death or pneumo-
nia/influenza hospitalization were unconfounded—thus mak-
ing the negative control detect bias even where none exists.
However, if N is associated only with some, but not all, of the
uncontrolled confounders of the association between A and
Y, it is possible that A and N will appear unassociated despite
the presence of uncontrolled confounding between A and Y.
In the influenza vaccine example, one could argue that there
are common causes of vaccination and death or pneumonia/
influenza hospitalization—that are not causes of injury-
related outcomes. Such a common cause (say, an aversion to
vaccination that makes an individual less likely to get the
pneumococcal vaccine) would be undetectable by this partic-
ular negative control. Despite these limitations, negative
controls have value in alerting the analyst to possible residual
confounding.

In principle, the measured confounders L of the A-Y
relationship need not be causes of N as well, because a
properly specified model that accounted for the confounding
by L of A-Y would not be misled if such confounding were
absent for A-N. In practice, the ideal negative control out-
come should nonetheless be one with incoming arrows as
similar as possible to those of Y, including the incoming arrows
from L. This is true, first, because it is difficult in practice to
imagine an outcome N that lacks association with known con-
founders L but has an association with uncontrolled (or even
unknown) confounders similar to that of U-Y. In addition,
because negative controls may be useful in detecting residual
confounding by measured confounders L or analytic errors, it
would be beneficial to have the L-N relationship be as similar as
possible, quantitatively, to the L-Y relationship. In eAppendix 1
(http://links.lww.com/EDE/A377), we describe the analytic ba-
sis for use of a U-comparable negative control outcome.

A negative control exposure B should be an exposure
such that the common causes of A and Y are as nearly
identical as possible to the common causes of B and Y (Fig. 3).
To the extent that the set of unobserved common causes U of
A and Y overlaps with the set of unobserved common causes
of B and Y, we call the negative control exposure B “U-
comparable” to A. If A and B are perfectly U-comparable and
B does not cause Y, then an association B-Y when analyzed
according to the same model used to analyze A-Y would
indicate bias in the association A-Y. If A and B are perfectly
U-comparable and B does not cause Y, then a null finding of

FIGURE 2. Causal diagram showing an ideal negative control
outcome N for use in evaluating studies of the causal relation-
ship between exposure A and outcome Y. N should ideally
have the same incoming arrows as Y, except that A does not
cause N; to the extent this criterion is met, N is called
U-comparable to Y.
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A-N means that the A-Y association is unbiased. We are not
aware of an example of the use of a negative control exposure
to detect confounding in this sense. In the influenza vaccina-
tion example, one might hypothesize that whatever residual
confounders U (eg, poor health status) made one less likely to
get influenza vaccine (A) and more likely to die of influenza
or pneumonia (Y), might also make one less likely to get
other vaccines, such as booster tetanus vaccine (B). Because
tetanus does not cause pneumonia, tetanus vaccine receipt
might be an appropriate negative control exposure for such a
study. In the previous section, we mentioned the use of
“probe variables” as negative controls to detect recall bias
that might lead patients with MS to over-report a history of
childhood infections. Recall bias, a form of reverse causation,
has a different causal structure from confounding,1 and we do
not outline here the causal requirements for negative controls
to detect reverse causation.

In observational settings, the comparability between
exposure A and negative control exposure B will be only
approximate. As in the case of negative control outcomes,
this approximate comparability means that B and Y may be
associated even when A-Y is unbiased; this would occur if
there is some other confounder U2 linking B and Y that does
not confound A-Y. Similarly, if A and B are only approxi-
mately comparable, it is possible for B and Y to show no
association yet for A-Y to be biased, if the confounder
biasing A-Y does not connect B to Y. An analytic basis for
the use of negative control exposures is given in eAppendix
2 (http://links.lww.com/EDE/A377).

In a cohort study, in which multiple exposures and
outcomes are measured on each person, it is relatively

straightforward to analyze negative control exposures and
outcomes, assuming that suitable variables have been mea-
sured. In a case-control study, the use of negative control
exposures is similarly straightforward because negative con-
trol exposures can be added to the set of exposure variables
collected for each subject. If a case-control study is nested
within a cohort, irrelevant outcomes can be selected and
analyzed. A stand-alone case-control study presents some
logistical problems for implementing negative-control out-
comes. This might require a second case-control study in
which “cases” include some irrelevant but comparable out-
come to the cases in the main study. This difficulty is reduced
if multiple control groups are used, as is occasionally done
for other reasons.11,12

A useful contrast can be drawn between variables that
can serve as negative controls and those that can be used as
instruments.13–15 An instrumental variable is any variable
that is connected causally to A but free of any of the
confounding connections to Y from which A suffers. In
contrast, a negative control outcome is connected to A
through all possible confounding routes but not causally.
Similarly, a negative control exposure is connected to Y
through all possible confounding routes but not causally.
Figure 3 depicts an instrumental variable Z that satisfies the
necessary conditions of an instrument16,17 while the variable
B is an ideal negative exposure candidate.

DISCUSSION
We propose that negative controls should be applied

more commonly in epidemiologic studies, as in laboratory
experiments, and with the same goals: to detect uncontrolled
confounding or other sources of bias that create a spurious
causal inference.1 The routine use of negative controls in
experimental biology allows the detection of both suspected
and unsuspected sources of bias. The challenge of deriving
valid causal inference is at least as great in observational
studies as in experiments. In other social sciences, negative
control outcomes are sometimes recommended for use with
observational as well as experimental studies,18 to compen-
sate for limited sample size and possible imbalance between
treatment arms.

Hill19 proposed specificity of association as one guide-
line for assessing causal inferences. Hill argued that causal
inferences were more credible if the exposure (in his exam-
ple, nickel mining) was associated with only certain types of
outcomes (death from lung and nose cancer but not death
from other cancers), and if the outcome was associated with
one kind of exposure (nickel mining) but not many others.
Hill himself, as well as more recent authors,16,20,21 have been
ambivalent about this particular guideline. Weiss22 has ar-
gued that specificity of outcome and exposure may, in certain
cases, lend credibility to causal inference, especially if there
is a strong hypothesis of why the outcome (or exposure)

FIGURE 3. Causal diagram showing an ideal negative control
exposure B for use in evaluating studies of the causal relation-
ship between exposure A and outcome Y. B should ideally have
the same incoming arrows as A; to the extent this criterion is
met, B is called U-comparable to A. Z is an instrumental
variable of the A-Y relationship and is depicted to illustrate the
difference between an instrumental variable and a negative
control variable.
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should be specific to the cause. Both Hill’s and Weiss’s
arguments are related to the ideas of negative controls; we
suggest that informative tests of specificity of association are
those that meet the criteria we have outlined for negative
control exposures or outcomes. Their value will vary depend-
ing on the plausibility of the claim that the control considered
is U-comparable to the exposure or outcome of interest.

Subject matter knowledge is required for the choice of
negative controls, just as it is for the design of appropriate
strategies to adjust for confounders. If an investigator iden-
tifies negative controls based on incorrect causal assump-
tions, the analysis involving negative controls may be mis-
leading. If a causal association between 2 variables A-N is
thought to be implausible and is used as a negative control for
a study of some other association A-Y, then finding an
association between A and N will erroneously suggest bias in
the association A-Y.

A properly selected negative control is a sensitive, but
blunt, tool to probe the credibility of a study. The “failure” of
a negative control—the finding of an association that is
judged not to be plausibly causal—does not identify what
form of bias is operating. In particular, as we demonstrate in
eAppendix 3 (http://links.lww.com/EDE/A377), the magni-
tude of bias due to uncontrolled confounding cannot gener-
ally be inferred from the magnitude of a detected A-N (or
B-Y) non-null association, without extra assumptions based
on firm scientific understanding. Furthermore, such additional
subject matter knowledge (or suspicion about the source of
analytic errors) is necessary to determine where bias is likely
to have arisen.

We have defined precisely the conditions under which
negative controls are capable of detecting the existence and
direction of bias due to uncontrolled confounders. We have
argued by example that negative controls can also aid in
detecting recall bias (reverse causation) or selection bias.
Epidemiologists must weigh these potential benefits of em-
ploying negative controls against the increased cost associ-
ated with the measurement of additional variables, and the
possibility that the assumptions under which the negative
control variables were selected are faulty.
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